复制项目

This commit is contained in:
kim.dev.6789
2026-01-14 22:35:45 +08:00
parent 305d526110
commit b7f8db7d08
297 changed files with 81784 additions and 0 deletions

View File

@@ -0,0 +1,783 @@
package util
import (
"bytes"
"fmt"
"image"
"image/color"
"image/draw"
"image/gif"
"math"
"math/rand"
"time"
"github.com/openimsdk/tools/errs"
)
// GenerateCaptchaImageFromCode 根据给定的验证码生成动态GIF图片
// 返回GIF图片的字节数组
func GenerateCaptchaImageFromCode(code string) (imgBytes []byte, err error) {
// 图片尺寸 - 宽度280px高度50px
width := 280
height := 50
// GIF动画参数
frameCount := 12 // 12帧动画更流畅
delay := 8 // 每帧延迟8单位1/100秒
// 创建统一的调色板(所有帧共享)
sharedPalette := createSharedPalette()
// 创建GIF
g := &gif.GIF{
Image: []*image.Paletted{},
Delay: []int{},
}
// 使用固定种子保证数字位置基本一致
baseSeed := time.Now().UnixNano()
// 预生成每帧的基础数据(干扰线、圆圈等的位置)
noiseData := generateNoiseData(baseSeed, frameCount, width, height)
// 生成每一帧
for i := 0; i < frameCount; i++ {
frame := image.NewRGBA(image.Rect(0, 0, width, height))
// 设置背景色(浅灰色,稍微模糊)
bgColor := color.RGBA{235, 235, 235, 255}
draw.Draw(frame, frame.Bounds(), &image.Uniform{bgColor}, image.Point{}, draw.Src)
// 使用随机数生成器(每帧略有不同)
rng := rand.New(rand.NewSource(baseSeed + int64(i*1000)))
// 绘制丰富的背景 - 添加渐变背景
drawGradientBackground(frame, rng, width, height)
// 绘制移动的背景圆圈类似bubbles效果
drawAnimatedCircles(frame, noiseData, i, width, height)
// 绘制额外的背景形状(矩形、椭圆等)
drawAdditionalShapes(frame, rng, width, height)
// 添加动态干扰线(位置会变化)
drawAnimatedNoiseLines(frame, noiseData, i, width, height)
// 决定是否显示数字(每隔几帧就隐藏数字,造成闪烁效果)
// 例如0,1,2显示数字3,4隐藏5,6显示7,8隐藏9,10显示11隐藏
showNumbers := (i % 3) != 2 // 每3帧中有2帧显示数字1帧隐藏
if showNumbers {
// 绘制验证码文字(位置会抖动)
drawNumbersWithWiggle(frame, code, rng, width, height, i, frameCount)
}
// 添加动态干扰点(位置会变化)
drawAnimatedNoiseDots(frame, noiseData, i, width, height)
// 添加模糊噪点 - 增加噪点密度
addBlurNoise(frame, rng)
// 添加额外的随机干扰线
drawRandomNoiseLines(frame, rng, width, height)
// 转换为调色板图像GIF需要
// 使用统一的调色板
paletted := convertToPalettedWithPalette(frame, sharedPalette)
if paletted == nil {
return nil, errs.New(fmt.Sprintf("failed to convert frame %d to paletted", i+1))
}
g.Image = append(g.Image, paletted)
g.Delay = append(g.Delay, delay)
}
// 编码为GIF
var buf bytes.Buffer
err = gif.EncodeAll(&buf, g)
if err != nil {
return nil, errs.WrapMsg(err, "encode gif failed")
}
// 验证数据不为空
if buf.Len() == 0 {
return nil, errs.New("generated gif data is empty")
}
return buf.Bytes(), nil
}
// NoiseData 存储每帧的干扰数据
type NoiseData struct {
lines [][]LineData
circles [][]CircleData
dots [][]DotData
}
type LineData struct {
x1, y1, x2, y2 int
color color.RGBA
thickness int
}
type CircleData struct {
x, y, radius int
color color.RGBA
}
type DotData struct {
x, y int
color color.RGBA
size int
}
// generateNoiseData 预生成所有帧的干扰数据
func generateNoiseData(baseSeed int64, frameCount, width, height int) *NoiseData {
rng := rand.New(rand.NewSource(baseSeed))
data := &NoiseData{
lines: make([][]LineData, frameCount),
circles: make([][]CircleData, frameCount),
dots: make([][]DotData, frameCount),
}
// 生成干扰线数据(每帧位置略有变化)- 增加干扰线数量
lineCount := 20 // 从10增加到20
for frame := 0; frame < frameCount; frame++ {
lines := make([]LineData, lineCount)
for i := 0; i < lineCount; i++ {
// 基础位置
baseX1 := rng.Intn(width)
baseY1 := rng.Intn(height)
baseX2 := rng.Intn(width)
baseY2 := rng.Intn(height)
// 每帧添加偏移,形成移动效果
offsetX := int(float64(frame) * 2.5 * float64(rng.Float64()-0.5))
offsetY := int(float64(frame) * 2.5 * float64(rng.Float64()-0.5))
lines[i] = LineData{
x1: clampCoord(baseX1+offsetX, width),
y1: clampCoord(baseY1+offsetY, height),
x2: clampCoord(baseX2+offsetX, width),
y2: clampCoord(baseY2+offsetY, height),
color: color.RGBA{
uint8(150 + rng.Intn(80)), // 更宽的颜色范围
uint8(150 + rng.Intn(80)),
uint8(150 + rng.Intn(80)),
200 + uint8(rng.Intn(55)), // 半透明
},
thickness: 1 + rng.Intn(3), // 增加线条粗细变化
}
}
data.lines[frame] = lines
}
// 生成背景圆圈数据移动的bubbles- 增加圆圈数量和大小变化
circleCount := 15 // 从8增加到15
for frame := 0; frame < frameCount; frame++ {
circles := make([]CircleData, circleCount)
for i := 0; i < circleCount; i++ {
// 基础位置
baseX := rng.Intn(width*2) - width/2
baseY := rng.Intn(height*2) - height/2
// 每帧移动
moveX := int(float64(frame) * 1.5 * float64(rng.Float64()-0.5))
moveY := int(float64(frame) * 1.5 * float64(rng.Float64()-0.5))
circles[i] = CircleData{
x: clampCoord(baseX+moveX, width),
y: clampCoord(baseY+moveY, height),
radius: 8 + rng.Intn(35), // 更大的半径范围8-43
color: color.RGBA{
uint8(180 + rng.Intn(50)), // 更宽的颜色范围
uint8(180 + rng.Intn(50)),
uint8(180 + rng.Intn(50)),
150 + uint8(rng.Intn(105)), // 更宽的透明度范围
},
}
}
data.circles[frame] = circles
}
// 生成干扰点数据(闪烁效果)- 增加点数量
dotCount := 200 // 从100增加到200
for frame := 0; frame < frameCount; frame++ {
dots := make([]DotData, dotCount)
for i := 0; i < dotCount; i++ {
x := rng.Intn(width)
y := rng.Intn(height)
// 某些点会在某些帧消失(闪烁效果)
visible := frame%3 != i%3 || rng.Float64() > 0.3
dots[i] = DotData{
x: x,
y: y,
color: color.RGBA{
uint8(120 + rng.Intn(110)), // 更宽的颜色范围
uint8(120 + rng.Intn(110)),
uint8(120 + rng.Intn(110)),
func() uint8 {
if visible {
return 200 + uint8(rng.Intn(55))
}
return uint8(80 + rng.Intn(120))
}(),
},
size: 1 + rng.Intn(3), // 更大的点尺寸1-3
}
}
data.dots[frame] = dots
}
return data
}
func clampCoord(v, max int) int {
if v < 0 {
return 0
}
if v >= max {
return max - 1
}
return v
}
// createSharedPalette 创建统一的调色板(所有帧共享)
func createSharedPalette() color.Palette {
palette := make(color.Palette, 256)
// 添加灰色渐变0-239
for i := 0; i < 240; i++ {
val := uint8(i * 255 / 240)
palette[i] = color.RGBA{val, val, val, 255}
}
// 添加常用颜色240-255
colorMap := map[int]color.RGBA{
240: {30, 30, 30, 255},
241: {60, 60, 60, 255},
242: {50, 50, 50, 255},
243: {40, 40, 80, 255},
244: {80, 40, 40, 255},
245: {50, 80, 50, 255},
246: {100, 30, 30, 255},
247: {30, 100, 30, 255},
248: {30, 30, 100, 255},
249: {140, 140, 140, 255},
250: {160, 160, 160, 255},
251: {180, 180, 180, 255},
252: {200, 200, 200, 255},
253: {220, 220, 220, 255},
254: {235, 235, 235, 255},
255: {255, 255, 255, 255},
}
for idx, col := range colorMap {
if idx < 256 {
palette[idx] = col
}
}
return palette
}
// convertToPalettedWithPalette 使用指定调色板将RGBA图像转换为Paletted图像
func convertToPalettedWithPalette(img *image.RGBA, palette color.Palette) *image.Paletted {
bounds := img.Bounds()
// 创建Paletted图像
paletted := image.NewPaletted(bounds, palette)
// 转换:找到最接近的调色板颜色
for y := bounds.Min.Y; y < bounds.Max.Y; y++ {
for x := bounds.Min.X; x < bounds.Max.X; x++ {
c := img.At(x, y)
// 找到调色板中最接近的颜色
idx := findClosestColor(c, palette)
paletted.SetColorIndex(x, y, uint8(idx))
}
}
return paletted
}
// findClosestColor 在调色板中找到最接近的颜色索引
func findClosestColor(c color.Color, palette color.Palette) int {
r, g, b, _ := c.RGBA()
minDist := uint32(^uint32(0))
bestIdx := 0
for i := 0; i < len(palette); i++ {
cr, cg, cb, _ := palette[i].RGBA()
// 计算欧氏距离
dr := (r >> 8) - (cr >> 8)
dg := (g >> 8) - (cg >> 8)
db := (b >> 8) - (cb >> 8)
dist := dr*dr + dg*dg + db*db
if dist < minDist {
minDist = dist
bestIdx = i
}
}
return bestIdx
}
// drawGradientBackground 绘制渐变背景
func drawGradientBackground(img *image.RGBA, rng *rand.Rand, width, height int) {
// 随机选择渐变方向
vertical := rng.Intn(2) == 0
if vertical {
// 垂直渐变
startR := uint8(220 + rng.Intn(35))
startG := uint8(220 + rng.Intn(35))
startB := uint8(220 + rng.Intn(35))
endR := uint8(200 + rng.Intn(55))
endG := uint8(200 + rng.Intn(55))
endB := uint8(200 + rng.Intn(55))
for y := 0; y < height; y++ {
ratio := float64(y) / float64(height)
r := uint8(float64(startR)*(1-ratio) + float64(endR)*ratio)
g := uint8(float64(startG)*(1-ratio) + float64(endG)*ratio)
b := uint8(float64(startB)*(1-ratio) + float64(endB)*ratio)
for x := 0; x < width; x++ {
img.Set(x, y, color.RGBA{r, g, b, 255})
}
}
} else {
// 水平渐变
startR := uint8(220 + rng.Intn(35))
startG := uint8(220 + rng.Intn(35))
startB := uint8(220 + rng.Intn(35))
endR := uint8(200 + rng.Intn(55))
endG := uint8(200 + rng.Intn(55))
endB := uint8(200 + rng.Intn(55))
for x := 0; x < width; x++ {
ratio := float64(x) / float64(width)
r := uint8(float64(startR)*(1-ratio) + float64(endR)*ratio)
g := uint8(float64(startG)*(1-ratio) + float64(endG)*ratio)
b := uint8(float64(startB)*(1-ratio) + float64(endB)*ratio)
for y := 0; y < height; y++ {
img.Set(x, y, color.RGBA{r, g, b, 255})
}
}
}
}
// drawAdditionalShapes 绘制额外的背景形状
func drawAdditionalShapes(img *image.RGBA, rng *rand.Rand, width, height int) {
shapeCount := 5 + rng.Intn(8) // 5-12个形状
for i := 0; i < shapeCount; i++ {
shapeType := rng.Intn(3)
x := rng.Intn(width)
y := rng.Intn(height)
// 随机颜色(浅色,半透明)
col := color.RGBA{
uint8(190 + rng.Intn(45)),
uint8(190 + rng.Intn(45)),
uint8(190 + rng.Intn(45)),
uint8(100 + rng.Intn(100)),
}
switch shapeType {
case 0: // 矩形
w := 15 + rng.Intn(40)
h := 15 + rng.Intn(40)
drawRect(img, x, y, w, h, col)
case 1: // 椭圆
rx := 10 + rng.Intn(25)
ry := 10 + rng.Intn(25)
drawEllipse(img, x, y, rx, ry, col)
case 2: // 小圆圈
radius := 5 + rng.Intn(15)
drawCircle(img, x, y, radius, col)
}
}
}
// drawRect 绘制矩形
func drawRect(img *image.RGBA, x, y, w, h int, c color.Color) {
for dy := 0; dy < h && y+dy < img.Bounds().Dy(); dy++ {
if y+dy < 0 {
continue
}
for dx := 0; dx < w && x+dx < img.Bounds().Dx(); dx++ {
if x+dx < 0 {
continue
}
r, g, b, _ := img.At(x+dx, y+dy).RGBA()
cr, cg, cb, ca := c.RGBA()
alpha := uint32(ca >> 8)
invAlpha := 255 - alpha
newR := uint8(((uint32(r>>8) * invAlpha) + (uint32(cr>>8) * alpha)) / 255)
newG := uint8(((uint32(g>>8) * invAlpha) + (uint32(cg>>8) * alpha)) / 255)
newB := uint8(((uint32(b>>8) * invAlpha) + (uint32(cb>>8) * alpha)) / 255)
img.Set(x+dx, y+dy, color.RGBA{newR, newG, newB, 255})
}
}
}
// drawEllipse 绘制椭圆
func drawEllipse(img *image.RGBA, cx, cy, rx, ry int, c color.Color) {
for y := -ry; y <= ry; y++ {
for x := -rx; x <= rx; x++ {
// 椭圆方程: (x/rx)^2 + (y/ry)^2 <= 1
if float64(x*x)/(float64(rx*rx))+float64(y*y)/(float64(ry*ry)) <= 1.0 {
px := cx + x
py := cy + y
if px >= 0 && px < img.Bounds().Dx() && py >= 0 && py < img.Bounds().Dy() {
r, g, b, _ := img.At(px, py).RGBA()
cr, cg, cb, ca := c.RGBA()
alpha := uint32(ca >> 8)
invAlpha := 255 - alpha
newR := uint8(((uint32(r>>8) * invAlpha) + (uint32(cr>>8) * alpha)) / 255)
newG := uint8(((uint32(g>>8) * invAlpha) + (uint32(cg>>8) * alpha)) / 255)
newB := uint8(((uint32(b>>8) * invAlpha) + (uint32(cb>>8) * alpha)) / 255)
img.Set(px, py, color.RGBA{newR, newG, newB, 255})
}
}
}
}
}
// drawRandomNoiseLines 绘制额外的随机干扰线
func drawRandomNoiseLines(img *image.RGBA, rng *rand.Rand, width, height int) {
lineCount := 8 + rng.Intn(12) // 8-19条随机线
for i := 0; i < lineCount; i++ {
x1 := rng.Intn(width)
y1 := rng.Intn(height)
x2 := rng.Intn(width)
y2 := rng.Intn(height)
col := color.RGBA{
uint8(160 + rng.Intn(70)),
uint8(160 + rng.Intn(70)),
uint8(160 + rng.Intn(70)),
uint8(150 + rng.Intn(105)),
}
thickness := 1 + rng.Intn(2)
drawThickLine(img, x1, y1, x2, y2, col, thickness)
}
}
// addBlurNoise 添加模糊噪点效果 - 增加噪点密度
func addBlurNoise(img *image.RGBA, rng *rand.Rand) {
// 增加随机噪点使图片看起来更模糊从1/50增加到1/30
for i := 0; i < img.Bounds().Dx()*img.Bounds().Dy()/30; i++ {
x := rng.Intn(img.Bounds().Dx())
y := rng.Intn(img.Bounds().Dy())
// 获取当前像素
r, g, b, _ := img.At(x, y).RGBA()
rVal := uint8(r >> 8)
gVal := uint8(g >> 8)
bVal := uint8(b >> 8)
// 添加轻微随机变化
noise := int8(rng.Intn(21) - 10) // -10 到 10
newR := clamp(int(rVal) + int(noise))
newG := clamp(int(gVal) + int(noise))
newB := clamp(int(bVal) + int(noise))
img.Set(x, y, color.RGBA{uint8(newR), uint8(newG), uint8(newB), 255})
}
}
func clamp(v int) int {
if v < 0 {
return 0
}
if v > 255 {
return 255
}
return v
}
// drawNumbersWithWiggle 绘制数字带抖动效果类似wiggle- 增加随机分布
func drawNumbersWithWiggle(img *image.RGBA, code string, rng *rand.Rand, width, height int, frameIndex, totalFrames int) {
// 根据宽度和高度调整字符大小适配新的280x50尺寸
charWidth := width / 18 // 约15280宽度时为15.5
charHeight := height * 4 / 5 // 约4050高度时为40
charSpacing := width / 25 // 字符间距,稍微减小以适应更小的空间
// 基础起始位置 - 更随机化
baseStartX := width/12 + rng.Intn(width/20) // 随机起始X位置
baseStartY := height/8 + rng.Intn(height/6) // 随机起始Y位置允许上下移动适配50px高度
// 数字颜色(深色但稍微模糊,降低对比度)
colors := []color.RGBA{
{30, 30, 30, 255}, // 深灰(不是纯黑,更模糊)
{60, 60, 60, 255}, // 中灰
{40, 40, 80, 255}, // 深蓝(模糊)
{80, 40, 40, 255}, // 深红(模糊)
{50, 80, 50, 255}, // 深绿(模糊)
{50, 50, 50, 255}, // 灰色
}
// 计算抖动偏移(使用正弦波创建平滑的抖动效果)
wiggleX := float64(frameIndex) / float64(totalFrames) * 2 * 3.14159
wiggleY := float64(frameIndex) / float64(totalFrames) * 2 * 3.14159 * 1.3
for i, char := range code {
// 随机选择颜色(偏深色但不要太黑,更模糊)
charColor := colors[rng.Intn(len(colors))]
// 基础位置 - 每个字符位置增加随机偏移
charRandomOffsetX := rng.Intn(width/25) - width/50 // ±5像素的随机偏移
charRandomOffsetY := rng.Intn(height/8) - height/16 // ±3像素的随机偏移
baseX := baseStartX + i*(charWidth+charSpacing) + charRandomOffsetX
baseY := baseStartY + charRandomOffsetY
// 添加抖动效果(每个字符的抖动幅度和相位不同)- 增加抖动幅度
charWiggleX := math.Sin(wiggleX+float64(i)*0.8) * 4.0 // 从2.0增加到4.0
charWiggleY := math.Sin(wiggleY+float64(i)*1.1) * 4.0 // 从2.0增加到4.0
// 额外的随机偏移 - 增加随机范围
xOffset := int(charWiggleX) + rng.Intn(7) - 3 // 从±1增加到±3
yOffset := int(charWiggleY) + rng.Intn(7) - 3 // 从±1增加到±3
x := baseX + xOffset
y := baseY + yOffset
// 确保不超出边界
if x < 0 {
x = 0
}
if x+charWidth > width {
x = width - charWidth
}
if y < 0 {
y = 0
}
if y+charHeight > height {
y = height - charHeight
}
// 绘制数字(使用简化版本:绘制矩形块模拟数字)
drawSimpleNumber(img, byte(char), x, y, charWidth, charHeight, charColor)
}
}
// drawSimpleNumber 绘制单个数字(简化版本,根据尺寸缩放)
func drawSimpleNumber(img *image.RGBA, digit byte, x, y, width, height int, c color.Color) {
digitValue := int(digit - '0')
// 缩放比例相对于原始16x24大小
scaleX := float64(width) / 16.0
scaleY := float64(height) / 24.0
// 根据数字绘制不同的小矩形块来模拟数字形状(原始坐标)
basePatterns := [][]struct{ x, y, w, h int }{
// 0
{{2, 2, 14, 2}, {2, 2, 2, 20}, {14, 2, 2, 20}, {2, 20, 14, 2}},
// 1
{{8, 2, 2, 20}},
// 2
{{2, 2, 12, 2}, {12, 2, 2, 10}, {2, 10, 12, 2}, {2, 10, 2, 10}, {2, 20, 12, 2}},
// 3
{{2, 2, 12, 2}, {12, 2, 2, 20}, {2, 10, 10, 2}, {2, 20, 12, 2}},
// 4
{{2, 2, 2, 10}, {2, 10, 10, 2}, {12, 2, 2, 20}},
// 5
{{2, 2, 12, 2}, {2, 2, 2, 10}, {2, 10, 12, 2}, {12, 10, 2, 10}, {2, 20, 12, 2}},
// 6
{{2, 2, 12, 2}, {2, 2, 2, 20}, {12, 10, 2, 10}, {2, 10, 10, 2}, {2, 20, 12, 2}},
// 7
{{2, 2, 12, 2}, {12, 2, 2, 20}},
// 8
{{2, 2, 12, 2}, {2, 2, 2, 10}, {12, 2, 2, 10}, {2, 10, 12, 2}, {2, 10, 2, 10}, {12, 10, 2, 10}, {2, 20, 12, 2}},
// 9
{{2, 2, 12, 2}, {2, 2, 2, 10}, {12, 2, 2, 20}, {2, 10, 10, 2}},
}
if digitValue >= 0 && digitValue <= 9 {
pattern := basePatterns[digitValue]
for _, p := range pattern {
// 缩放坐标
px := int(float64(p.x) * scaleX)
py := int(float64(p.y) * scaleY)
pw := int(float64(p.w) * scaleX)
ph := int(float64(p.h) * scaleY)
// 确保最小尺寸
if pw < 1 {
pw = 1
}
if ph < 1 {
ph = 1
}
rect := image.Rect(x+px, y+py, x+px+pw, y+py+ph)
draw.Draw(img, rect, &image.Uniform{c}, image.Point{}, draw.Over)
}
}
}
// drawAnimatedCircles 绘制移动的背景圆圈
func drawAnimatedCircles(img *image.RGBA, data *NoiseData, frameIndex int, width, height int) {
if frameIndex >= len(data.circles) {
return
}
for _, circle := range data.circles[frameIndex] {
drawCircle(img, circle.x, circle.y, circle.radius, circle.color)
}
}
// drawCircle 绘制圆圈
func drawCircle(img *image.RGBA, cx, cy, radius int, c color.Color) {
for y := -radius; y <= radius; y++ {
for x := -radius; x <= radius; x++ {
if x*x+y*y <= radius*radius {
px := cx + x
py := cy + y
if px >= 0 && px < img.Bounds().Dx() && py >= 0 && py < img.Bounds().Dy() {
// 获取当前像素并混合颜色
r, g, b, _ := img.At(px, py).RGBA()
cr, cg, cb, ca := c.RGBA()
// Alpha混合
alpha := uint32(ca >> 8)
invAlpha := 255 - alpha
newR := uint8(((uint32(r>>8) * invAlpha) + (uint32(cr>>8) * alpha)) / 255)
newG := uint8(((uint32(g>>8) * invAlpha) + (uint32(cg>>8) * alpha)) / 255)
newB := uint8(((uint32(b>>8) * invAlpha) + (uint32(cb>>8) * alpha)) / 255)
img.Set(px, py, color.RGBA{newR, newG, newB, 255})
}
}
}
}
}
// drawAnimatedNoiseLines 绘制动态干扰线
func drawAnimatedNoiseLines(img *image.RGBA, data *NoiseData, frameIndex int, width, height int) {
if frameIndex >= len(data.lines) {
return
}
for _, line := range data.lines[frameIndex] {
drawThickLine(img, line.x1, line.y1, line.x2, line.y2, line.color, line.thickness)
}
}
// drawAnimatedNoiseDots 绘制动态干扰点
func drawAnimatedNoiseDots(img *image.RGBA, data *NoiseData, frameIndex int, width, height int) {
if frameIndex >= len(data.dots) {
return
}
for _, dot := range data.dots[frameIndex] {
if dot.color.A < 50 {
continue // 跳过几乎透明的点
}
// 绘制点可能是1x1或2x2
for dx := 0; dx < dot.size && dot.x+dx < width; dx++ {
for dy := 0; dy < dot.size && dot.y+dy < height; dy++ {
img.Set(dot.x+dx, dot.y+dy, dot.color)
}
}
}
}
// drawThickLine 绘制粗线
func drawThickLine(img *image.RGBA, x1, y1, x2, y2 int, c color.Color, thickness int) {
for i := 0; i < thickness; i++ {
offsetX := i - thickness/2
offsetY := i - thickness/2
drawLine(img, x1+offsetX, y1+offsetY, x2+offsetX, y2+offsetY, c)
}
}
// drawLine 绘制直线Bresenham算法简化版
func drawLine(img *image.RGBA, x1, y1, x2, y2 int, c color.Color) {
dx := abs(x2 - x1)
dy := abs(y2 - y1)
sx := 1
if x1 > x2 {
sx = -1
}
sy := 1
if y1 > y2 {
sy = -1
}
err := dx - dy
x, y := x1, y1
for {
if x >= 0 && x < img.Bounds().Dx() && y >= 0 && y < img.Bounds().Dy() {
img.Set(x, y, c)
}
if x == x2 && y == y2 {
break
}
e2 := 2 * err
if e2 > -dy {
err -= dy
x += sx
}
if e2 < dx {
err += dx
y += sy
}
}
}
// addNoiseDots 添加干扰点(更多更密集)
func addNoiseDots(img *image.RGBA, rng *rand.Rand, count int) {
for i := 0; i < count; i++ {
x := rng.Intn(img.Bounds().Dx())
y := rng.Intn(img.Bounds().Dy())
// 随机颜色(浅色,增加模糊效果)
brightness := 140 + rng.Intn(90) // 140-230之间
dotColor := color.RGBA{
uint8(brightness + rng.Intn(30) - 15),
uint8(brightness + rng.Intn(30) - 15),
uint8(brightness + rng.Intn(30) - 15),
255,
}
// 有时绘制小区域而不是单个点(更密集的干扰)
if rng.Intn(3) == 0 {
// 绘制2x2的小块
for dx := 0; dx < 2 && x+dx < img.Bounds().Dx(); dx++ {
for dy := 0; dy < 2 && y+dy < img.Bounds().Dy(); dy++ {
img.Set(x+dx, y+dy, dotColor)
}
}
} else {
img.Set(x, y, dotColor)
}
}
}
func abs(x int) int {
if x < 0 {
return -x
}
return x
}